李豹,王巍,张蔷,李海坤.基于AI的电网母线负荷典型特征提取技术[J].电工技术,2022(5):71-73
基于AI的电网母线负荷典型特征提取技术
  
DOI:TM726DOI:10.19768/j.cnki.dgjs.2022.05.018
中文关键词:  母线负荷  典型负荷曲线  综合框架  提取  聚类  检测
英文关键词:
基金项目:
作者单位
李豹 中国南方电网电力调度控制中心 
王巍 中国南方电网电力调度控制中心 
张蔷 中国南方电网电力调度控制中心 
李海坤 北京清软创新科技股份有限公司 
摘要点击次数: 915
全文下载次数: 0
中文摘要:
      母线负荷量级小,母线曲线特征在不同时空下的差异较明显。传统技术中,通常对呈现相对固定特征的曲线开展分析,忽略了关键的“异常用电曲线”,实用性较差。针对此种问题构建了基于聚类技术的电力负荷特征提取分析综合框架,基于海量母线负荷数据,首先利用基于密度的聚类算法提取母线典型负荷曲线,然后利用K means算法对母线典型负荷曲线进行聚类,最后利用LOF算法对聚类结果中的异常数据进行检测,通过人工干预的方法对各异常检测结果进行单独分析,实现了对“典型”和“异常”用电曲线的全覆盖。通过对广东省内1062条实际母线进行算例验证,表明该技术框架具有可行性及实际意义。
英文摘要:
      
查看全文  查看/发表评论  下载PDF阅读器