薛正爱,黄陈蓉,张建德,支昊,顾飞.基于小波变换和极限学习机的电能质量扰动分类[J].电工技术,2020(15):41-43
基于小波变换和极限学习机的电能质量扰动分类
  
DOI:10.19768/j.cnki.dgjs.2020.15.011
中文关键词:  小波变换  极限学习机  电能质量  多分类
英文关键词:
基金项目:
作者单位
薛正爱 南京工程学院 
黄陈蓉 南京工程学院 
张建德 南京工程学院 
支昊 南京工程学院 
顾飞 南京工程学院 
摘要点击次数: 1442
全文下载次数: 0
中文摘要:
      利用小波变换(WT)和极值学习机(ELM)对电能质量事件(PQE)进行识别分类,利用离散小波变换(DWT)对信号进行多分辨率分析,获得PQ信号的特征能量系数,并在25、35、45dB噪声环境下,构造了3种PQ数据集。ELM是一种有效的广义单隐层前馈网络(SLFNs)学习算法,可用于识别各种多分类问题。对比试验与现有方法结果,证明基于小波变换的极限学习机能对8种扰动进行有效分类,具有鲁棒性强的识别结构,可用于实际电力系统信号分类。
英文摘要:
      
查看全文  查看/发表评论  下载PDF阅读器